
Rational

Challenge:
Atmospheric CO2 concentrations are still steadily
increasing [1]. In livestock agriculture “nature
based” strategies can mitigate on-farm greenhouse
gas emissions (GHG), by imitating natural processes
that store CO2 from the atmosphere, which include
cover crops [2,3,4], and conversions of annual
croplands to continuous green cover such as
pastures [5]. Agricultural GHG balances often
ignore the role that landscape productivity plays in
whole-farm emission mitigation [6,7]. 
Measurements of sources and sinks are time
consuming and expensive, and rarely within the
realms of possibilities for a dairy producer [8].

Solution:
A broader suite of tools to implement natural
climate solutions that boost carbon sequestration
and mitigate GHG emissions in agricultural
systems. Remote sensing data have been applied to
predict aboveground biomass with relatively low
uncertainty in agricultural systems [9,10]. But their
implementation into full farm GHG budgets is still
limited [11]. Eddy covariance can help improve
crop specific parameters on a continuous basis, but
these systems are expensive, time-intensive, and
require technical skills, and are often constrained
to one vegetation type [12,13].

Testbed:
We use eddy covariance measurements and the
environmental response function approach [14] to
improve crop parameters inputs of remote sensing
models to improve a whole farm greenhouse gas
budget for the Dairy Forage Research Center
(DFRC) farm (890 ha, Fig. 1) in Sauk County, 
Wisconsin for 2019. 

Objectives

1. Can we use eddy covariance to monitor
vegetation productivity from spatially complex
agroecosystems?

2. Can we use eddy covariance results to improve
remote sensing models to upscale vegetation
productivity across larger spatial scales?

Monthly Farm Emissions

• Daily enteric, manure and field GHG emissions
were estimated from diet nutritive values following
IPCC guidelines [15]

Improving Remote Sensing Crop Parameters using Eddy Covariance

Greenhouse Gas Budget for the Dairy Forage Research Center Farm
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• Eddy covariance can be used to monitor agroecosystem productivity while accounting
for the spatial complexity of landscapes

• Eddy covariance can improve remote sensing models to upscale vegetation biomass
productivity and vegetation health

• Eddy covariance ERF spatial NEE allows for monitoring of ecosystems at night
• The DFRC dairy farm had a net zero carbon budget for the year 2019 mitigating all
on-farm emissions

Figure 3: Workflow improving remote sensing vegetation productivity models via eddy covariance environmental response function (ERF) 
approach

Figure 2: Barn and field emissions by month converted to CO2eq for 
direct comparisons (for abbreviations see table 1)

Figure 1: Crop and 
natural vegetation 
distribution at the 
Dairy Forage 
Research Center 
farm, Wisconsin, 
USA during 2019 • Manure emission increased during summer due to reduced field applications (Fig. 2)

• Updating Remote sensing models using eddy covariance improved model predictions of
annual harvest NEP (Fig. 4a)

• Annual field NEP predictions correlated well with harvest annual NEP estimates (Fig. 4b)

Figure 5: Crop and natural vegetation distribution at the Dairy Forage Research Center farm, Wisconsin, USA during 2019 

Figure 4: Improvements of (a) remote sensing literature MQY using 
eddy covariance results increased fit (both slope and R2) of (b) harvest 
NEP and remote sensing NEP for each field and crop type at the DFRC 
farm. 

Abbreviation Description
CH4ent enteric CH4
CO2ent enteric CO2
CH4man manure CH4
N2Oman manure N2O emissions
N2Ovol indirect volatile N2O
NH3vol indirect volatile NH3
N2Oleach N2O from leaching manure pit
EVI Enhanced Vegetation Index
LSWI Land Surface Water Index
LST Land Surface Temperature
PAR Photosynthetic active radiation
GPP Gross Primary Productivity
Reco Ecosystem Respiration
MQY Maximum Quantum Yield
NEP Net Ecosystem Productivity
NEE Net Ecosystem Exchange of CO2

Table 1: Abbreviations a b


