Local virtual enclosures to enforce managed grazing

Hal Evensen, Cyrus Habibi, Andy Cartmill (UW-Platteville) Chris Wilson (Wilson Organic Farms, Cuba City WI)

DAIRY INNOVATION HUB

DILATTEVILLE

PLATITEUTE

PLAT

Background

- 500 head of dairy cattle grazing on 200 acres in rural Cuba City WI;
- Using rotational grazing:
- Pasture broken into 2-3 acre paddocks;
- Paddock advanced as grazed
- 2X/day in Spring; less in summer
- Land is 3-4X more productive; est. \$100/head/year benefit
- Cattle move on their own from barn, down path, into paddock (cattle are not tracked or led)

Desire for Improvement

- Fencing moved manually, est. 1 hr/day
- "Quality control" also an issue
- "Tumblewheel" system in use
- No data on which cows are grazing, and for how long.
- Existing GPS systems are costly
 - Designed for beef, large ranges
 - \$40/head/year = overkill

Goal: Automated Rotational Grazing

- Target: nominal \$10/head/year cost
- Use local tracking (vs. satellite) to lower cost
- Challenging! Pursuing two tracks:
 - 1. Virtual fencing: cow collars with "invisible fence"
 - 2. Physical fencing: automated barrier adjustment

Track 2: Physical Fencing

- Advantages: Cost, data, compatibility (with both herd and staff)
- Potential disadvantages: flexibility, mechanical reliability
- Engineering Senior Design used for development
- A. Fall 2020: ATV-pulled, electrified cart with winch
 - A. Simple, effective, low-cost solution
 - B. Compatible with existing workflow
 - C. No large-scale installations needed
 - D. Cart doubles as a mobile sensor platform
 - A. Pasture data
 - B. RFID tracking of herd entry/exit
- B. Spring 2021: Automated cart (Team #1)
 - A. Powered by electric wheelchair motors
 - B. Improved wheels
 - C. Controlled via smartphone app
 - D. Raspberry Pi and motor controllers
- C. Spring 2021: Sensor Platform (Team #2)
- A. Temperature, pressure, humidity
- B. GPS
- C. Real-time clock
- D. SD-card data storage
- E. Cable tension
- F. Communications between two carts
- G. Weatherized

Track 1: Virtual Fencing

- Advantages: Flexibility, data, ease of use
- Potential disadvantages: complexity, cost, herd acceptance
- Professor with student researchers used for development
- Smart Collars
- Solar panel with battery
- GPS tracker
- Speaker (audio signal for boundary)
- Electrical shock module under investigation
- Web-based interface
- Marking boundaries
- Tracking collars

Future/Continuing Work

- Physical Fencing (Fall 2021)
 - Sensor node (Student researcher)
 - Smaller, weatherized, expandable
 - Add RFID reader
 - Upgrade GPS (to ±2 cm)
 - Communication needed: field-wide WiFi? LoRa?
 - Automated Cart (Senior Design)
 - Automated connection to electric fencing
 - Automated winch operation
 - Two-cart test: build second cart!
 - Virtual Fencing (ongoing)
 - Add electrical shock generator smart collar
 - Over-the-air updates
 - Light sensor for "indoor sleep mode"
 - Energy/battery check; power conservation

